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ON T'-MINIMAX, MINIMAX, AND BAYES PROCEDURES FOR
SELECTING POPULATIONS CLOSE TO A CONTROL

by

Shanti S. Gupta and Ping Hsiao
Purdue University and University of Michigan

o ABSTRACT
V- Odhﬁ P, aub R

- Let\gg,QB,...,gg)be (k+1) normally distributed populations
and let‘iﬁabe a control population. Our goal is to select those
populations which are sufficiently close to the control in terms
of the (unknown) means of the populations. A zero-one type loss
function is defined. TI-minimax rules, Bayes rules and minimax
rules are derived for this problem and compared. Some optimal ']
properties of ﬁ-minimax rules are shown; alsoLF—minimax rules
are derived fof}distributions other than the normal.
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ON I'-MINIMAX, MINIMAX, AND BAYES PROCEDURES FOR
SELECTING POPULATIONS CLOSE TO A CONTROL*

by

Shanti S. Gupta and Ping Hsiao
Purdue University and University of Michigan

1. Introduction and summary

Problems of selecting populations close to a control arise |
frequently in industrial production, in situations such as for
matching parts. Assume that we have (k+1) populations and one
of them is the control or standard population. Our goal is to
select those populations which are sufficiently close to the
control. Many authors have considered problems of comparing
populations with a control under different types of formulations.

Paulson (1952), Bechhofer and Turnbull (1974) discussed problems

of selecting the best population if the best population is better
than the control. Dunnett (1955), Gupta and Sobel (1958) considered 3
problems of selecting a subset containing all populations better i
than the control. Lehmann (1961), Tong (1969), Randles and H
Hollander (1971) dealt with problems of selecting populations

better than control. For problems of classifying a set of

populations into three groups which are 'superior', 'inferior'

and 'equivalent' to a control, see Kim (1979) and Gupta and Kim

(1980) and related references therein. However, not much work has

been done for the problem of selecting populations close to a control.

*This research was supported by the Office of Naval Research ¥
contract N00014-75-C-0455 at Purdue University. Reproduction N
in whole or in part is permitted for any purpose of the United o
States Government.




Singh (1977) and Gupta and Singh (1979) considered this problem

and derived Bayes (and empirical Bayes) rules for various distri-
butions. In this paper, T'-minimax rules for selecting populations
close to a control are derived, and these are compared with
minimax rules and Bayes rules for robustness against the prior
information. In Section 2, definitions and notations are intro-
duced and a decision theoretic formulation of the problem is given.
Results in Section 3 and Section 4, deal with the cases when all
populations are assumed to be normally distributed. [I'-minimax

decision rules are derived when the control parameter 8, is known,

0
and restricted '-minimax rules are derived when 00 is unknown. In
Section 5, some optimal properties of T'-minimax rules are found.
In Section 6, results of Section 3 are generalized and I'-minimax
rules are derived for distributions other than the normal.
[-minimax rules for selecting binomial populations with large
entropy are also discussed. In Section 7, “0 is treated as an
unknown. Bayes rules are found under the assumptions that by has
a normal prior distribution with mean Ay and variance H?, i =0,
1,...,k, which are assumed known. Minimax rules are also derived
in this section. And Bayes rules, ['-minimax rules and minimax
rules are compared in Section 8 in terms of the Bayes risk, the

maximum risk over ' and the maximum risk over all the possible

prior distributions.

2. Notations and formulation of the problem.

Let ﬂo,ﬂl,...,ﬂk be (k+1) independent normal populations with
. 2 2 2 o

means “O'Ll""'ok and known variances "0'”1"""k’ respectively.
Assume that ”0 's the control population, with mean Y9 which may




be known or unknown. For I

1""'Hk’ the treatment populations,

se+..,0, are all assumed to be unknown. When 6, is unknown,
1 k 0

k) and X = (xo,xl,...,xk) where Xi is an

0

let Q = (8016 le

170"

observation from Hi, i=20,1,...,k. When Uo is known, no

observation from ll, is taken, and 6 X, are deleted from ¢ and ‘

0 0’ 0
X, respectively. When there is no confusion, ¢ and X are used i

to represent either case. Let ® be the parameter space and ; be

the sample space. For i = 1,2,...,k, define Gi = {?Eb [Oi—ﬁol Co |

and B, = {96@']01-001 > A+¢] where A and - are given positive
constants. Hi is said to be good (or acceptable) if QEGi and

bad (not acceptable) if QEBi. We consider decision rules of the
form §(x) = (61(¥)""'6k(§))’ where 6i(§) denotes the conditicnal
probability of selecting Hi as a good population given X=x. The
objective is to select all the good populations while rejecting
all the bad ones. Let Ly be the loss incurred when we fail to

select a good population and L2 the loss for each bad population

selected. The the loss function is defined by

k k .
_ _ © (1) . .
L(u,8) = Z Ly (1-6,)I, (0)+L,6 I (9) 2 L (v, 8. (2.1
i=1 i i i=1
Where IA denotes the indicator function of A. We assume that the
1
partial information available is of the form: ”i has probability
My to be good and probability Ai to be bad. Let ) = (Al,-..,)k) 7
and »' = (x',...,)i). Ve define s* = {1|1 is a prior distribution
on 9t, and T = I'(A,2') = {1€@*|P (G.) = )., P (B,) = !, for
e t 1 i td b
i=1,...,kl, where 0 - ., + 4: - 1 and P_(A) = [di(“). Then,
‘ A

i'(r,2') denotes the class of all the prior distributions which




summarizes our information about 6. We restrict our investigation
to this class. Let R(9,8) = Eb[L(e,é(X))] and r(1,48) = E,[R(H,h)].

In this f.ramework, an ith component problem is concerned with the

selection or rejection of Hi' Then R(l)(e,di) = EU[L(I)(U,hi)]

(1)

and r ' (1,6,) = EI[R(l)(Q,di)] denote the risk function and the
Bayes risk function of the ith component problem, respectively. It

is found that

ko (i) LY
R(6,8) = J R 7'(8,8,) and r(1,8) = J r'*(1,8.).
22 . M < b i
i=1 i=1

A rule §* is called a I'minimax rule in D if

sup r(t,8*) = inf sup r(1,8)

1€Tl - §€D €T -
where D is a class of decision rules.
3. Derivation of a "'-minimax rule when 00 is known.

In this section, 60 is assumed to be known. We define
. = 3 = . = L 6.=6 . =A . = L= v
Gy {gtcilei Bo*sl, Gy, {gecllel bo=01, By {“651)“1 Og+i+
= =f =A- =(§. . i
and B, {QGBiQOi Bp=8=r1. Let &, (x) ;(x;) be an ith component
decision rule and let gi(ai) = E6 [éi(xi)], then we have
i
Lemma 3.1. For any fixed i, if égé gi(ﬂi) = gi(eO+A) = qi(“o—\)
S|
and Zgg gi(oi) = gi(“0+A+L)=qi(UO—A—i), (3.1)
IS |
then
(i) _ (1), . v
sup r (1,6i)—r (lo,ui) for all 10..0(1),
1€D

where rg(i) = {7€F]P[(Gi1)+PI(Giz)=xi,PI(Bil)+PI(Biz)zkil.




(1)

Proof: (T,éi) = é.EQ[Ll(l~5i(§))]d1(Q)

+ é EO[chi(g)]dw(Q)
i~ |

< le.—leilnf qi(ﬂ.)+L2Ai sup gi(O.)

. 0€G, . 0€B, *
N 1 N |
= LlAi_Ll{PIO(Gil)gi(00+A)+P10(Gi2)gi(GO_A)}
{ Y ]
+ Lzlplo(Bil)qi(H0+A+f)+P10(Bi2)qi((0 A=e )}
=M ,8.) for all 1, € T'_(i)
0’1 0 0 :
This completes the proof.
k
Theorem 3.1. If there exists a 1* € N Fo (1) such that rlx) =
i=1 )

A;(xi) is a Bayes rule wrt 1* for the ith component problem and if

(3.1) is satisfied for gi(Oi) = E [ﬁz(xi)] for all i=1,2,...,k,

0
i
then ~* = (AI,...,AE) is a I'-minimax rule.
K (i)
Proof: sup r (1,¢*%) < ) supr (1,0%)
€71 i i=1 1€r
K (i)
= Jr (1*,‘3) by Lemma 3.1
i=1
K (i
o) G* ) =r(i*,2) - sup r(,0)
i=1 e
for all ¢. This completes the proof. é

Lemma 3.2. Let the pdf f(x{") of X be TP, (Totally Positive of

order 3). If g(¢) = E~[](a b)()()], and for some © gle+re ) =

0'

q(u—uo), then g is increasing for " - "o and hence decreasing for

0

7] 3]

0




Proof: Let hc(x) = I(a'b)(x)-c for ¢ € (0,1), then qc(ﬁ) = g(h)-c

where gc(e) = Ee[hc(X)]‘ Let S(hc) denote the number of sign

changes of the function hc' then S(hc) = 2. Now by Variation

Diminishing Property (VDP){Karlin (1968), see p. 21) it is scen

RPN

that S(gc) < 2 for all ¢ € (0,1). If g is not increasing for
g < 90, then there exist 01 < 62 < 00 and g(ﬂl) > g(uz). Let

8 = 280-—6l and eé = 260—02, then g(Bi) ~ g(Ué). We find that

1
p = 3 = H
S(gco) > 2 for ¢, 1/2[g(6)+g(8,)], so S(qco) 2. But qco :
does not change signs in the same way as hc does which contradicts
0
VDP. This completes the proof.
Now let {
+4 -4
g, (0 = = (0804 ()
i 1 i i
(3.2}
+A+t —HN=
o0 = 2 Lo (AN 4 (X200
. g, a, 0.
1 i i i
2
- X
_ 1 2
where $(X) = — e . Then we have
2n
* = * = -1, a . .
Theorem 3.2. 1If Si(§) di(xi) II—ti,til(xi 'O) and tL 0
satisfies
t — y =
LZAifJi(ti) = leiqui(ti) for i=1,...,k, (3.3
then ¢&¢* = (3{,...,3£) is a I'~minimax rule.
Proof: Let 1* ¢ I' be a prior distribution on ¢ such that Pty
2 * 4, = R .‘_ =]~ ~i? 3 N
are independent under 1*, and pw*((i Hgtht 2) 1 LiTA Poale g
o 3!
- _1__ = = _.} 1=
p7*(612) = 3 PT'(RLI) Pr*(BiZ) 5 for i=1,2,...,k.
k 1 xi~ei
Let f(xln) = —= {(-——), then we have




r(l)(T*,Gi) = le(l—éi(x)) ) f(§|Q)PT*(Q)
X 9€G1UG;,
+ Lzéi(g)ogB . £(x[0)P ,(8)ax.
JPPi1YP52
I E(x][0)P ()
UEGil
If we let C(Xl""'xi—l'xi+l”"'xk) = 5 Vo a—y
i e
2 N oy
D Ex]o)P ,(0) ) £(x][8)P ,(0) |
BEG, h - DEB, T ) |
- o~ 12 Maee!
)‘_i 1_ ®(xi—£70+[\) _)‘_1 1 1‘(x.—(‘o—/\—{i)
2 0, o 2 g, C.
1 1 1 1
) f(x|6)P_,(0)
DEB . o7 ' -
_ o~ 712
Y % 0 +hsc ' then
S O B
2 . o
i ,
i
sy = 1/72fL A.g_ (x,-8,)C(x X X %, )dx
i Xlloi i 0 1/ % i-1""4i+41"""""7k
+ l/2£6i(x)[szifoi(xi—(,\o)-leigoi(xi-GO)]c(xl,...,xi_l,xi+l,...,
xk)dx.
Hence the Bayes rule for the ith component problem wrt 1%* is
1 if L.x.g (x.-6.) L A!f (x.=-6.)
SE(x) = &%(x.) ={ Lafoy 7 00="20dm0, 710
i i 7
0 if
. X .
(%) cosh| 2(H+,))
Lz)\i Gi ﬂi
Let h,.(x)= ——— = k, .
1 Lyig,, 0 1o coshi®s ) ;|
i J2
Ci
Lyb i 1
where k.= ——= exp[- —=(2A+:):], then h,(x)=h,k(-x) and h,.(x) is
i L., 2 1 i 1
171 2(7i
increasing for x - 0, hence h,(x) - 1 if and only if %, - t
. . i i = 3 , % = = ).
where t.l 0 satisfies hi(ti) 1. So, fi(xi) I[_t.'t’](x] 0)

1 1




4 e S ——= v e e oo

Ce e e

. _ N , _ Lo
Now, if gi(ei) E .[Gi(xi)], we find g;(9,+04) g; (g0,

8
Also, xi ~ N(ei,oi)f so the pdf of Xi is TP, hence TP3 from
Karlin (1968) (see p. 18). Now, by Lemma 3.2, (3.1) is satistied,
then Theorem 3.1 shows that §* is a '-minimax rule. This finishes
the proof.

A A
Let A/)\' be defined as (*%,...,I$). If F(y)={TG®*[P‘(Gj)/P,(Bi)z
T 1 k ' ‘
Yy for i=1,2,...,k} where Y=(yl,Y2,...,Yk), then we have |'(y)=

1) '{x,x'). Since §* depends on X,)' only through A/A', we find
A/x'=y T 7 - T T

sup r(t,8) = sup sup r(i,s)
TE(!) - §/§'=Y IEF(},X') B
> sup sup r(t,58%)

A/NT=Y TRl (Y, 00

= sup r(r,8%)
TEF(Y) -

hence &* is a I'-minimax rule for I = TI'(y).
It is possible that (3.3) does not have a solution. In this case,

the '-minimax rules imply that all populations are bad.

4. A restricted I'-minimax rule for 00 unknown.

When 0, 1s unknown, decision rules are restricted in a subclass

0
! 'o= 8= & & . =¢ . . i=1,...,k!.
D', where D (8 (61""'“k)[(1(X) l(xo,xl) for 1=1, Kk
That such a restriction is needed was first pointed out by Randles
and Hollander (14). The following lemma has been used by Micscke
(1979). The original idea of this lemma is due to Ferauson (1967)

and Lehmann (1959).

Lemma 4.1. Let {rn}:=l be a sequence of prior distributions on
®, and let ﬁ?n be a Bayes rule wrt Th for the ith component problem,

If




N (1) 0 . (i) 0
112+inf Y (ln,Sin) > fgg Y (1,0i)

0

for all i =1,2,...,k, then § = (60

l'

0 0, _
- : rule
2,...,6k) is a I'-minimax rule.

8
A prior distribution 1 on @O X @l X...x ©, can be specified

by the marginal distribution T on @0 and the conditional distribution

m”o on @lx...x @k, given ”0:00' We use ‘=(T,mﬂo) to denote such
prior distributions. Let (h = (Tn,mg ), where Tn is uniformly
0
distributed over the interval [-n,n] and 81,62,...,0k are condition-
ally independent under wg , and
0
Al
- X
Pk (Bj log) = Pt (Bi,l00) 3
0 0
i
3! = —
P (G leg) Puox (G;,18¢) 2 (4.1)
0 "0
I3 = f; = - -_ ' ) =
pw* {0|3i 60+A+ 2} 1 Ai Ai for i=1,...,k.
)
0
Let wg denote the conditional marginal distribution of ﬁi under
‘0,1
wys- Then, we have
0
Theorem 4.1. When UO is unknown, a T-minimax rule in D' is given
0 _ 0 0 0 _ - v
by &7 = (81,...,&k), where &i(g) = I[‘tirti](xi xo) and ti 0
satisfies
. 2, 2,172 .
'y=L) ! ' '= 4
leiq“i(ti) L2’ifwi(ti)’ with al (00+(l) , cdd)

g, and f”, are defined in (3.2).

i i
Proof: For 1 ~defined above, let h (x) = % ﬁ(é), then
(1) "
- - & Lk .
oG e I Ly (=B, DA (X X0 Dder )
-n |a.=0.]a 0’1 0,1
i 0'—
Lk . : .
+I: N LZE“ '“'[61(X0,Xi)]d‘“ .(Xl)rdrn( O)
‘(j—HO'i +i 0" 1 0,1

bt




ks

10
T Tkt )
=L L oo im0 0700) m 900Ti8%
+ chi(x(),xi){-—_2 jfc.(xi'eo)ho (xg=8o) 37 49,
o = RACH .
Llli n L

- _£90i<xi-eo)hco(xo-eo) 5 dBg)dx, dxg.

Hence, the Bayes rule wrt Th for the ith component problem is

n
1 3f Lpaf [ (x;=6g)h, (x4-04)d8,
-n i 0
0 n
$in(Xjr¥Xg)= S Lyhy Jgg (xy=8g)hy (x4=04)dog
-n i 0
0 >
and the Bayes risk of ng is given by
. ® L L,A, n
(i) 0 _ . 171 _ -
r (1 8;,) = | min{-——= fgol(xi 0g)h, (xy=84)db g,
~® - -n "1 0
L2Ai n

[ 5 (%;-0)h (x;-0,)d0,)dx; dx

4n ~n i 0

Now consider the change of variables

¥{TNY*Yg
: for the outside two integrals, then let noznyi-uo
¥p=NY; Yo
for the inside integral.
. 9 (X;.%p) .
Since 57?;7;87 =2n and ho(x)=h0(—x), we find
' o o n(y;+1)
(1) 0 . _ . 17i _ .
ey = [ mint5— 9y, (Yg+nglh, {ng=ygoldng.
- —o n(yi—l) 1 0
LAy Pyl
% = f0 (y0+n0)h0 (n0~y0)dn0}dyidy0.
n(y,;-1) i 0

0°




11
It is known that
f——~¢(—~—)¢>( byagx = L g(—222,
02+n2 »/0—2+n
hence
fg (no-a)h 0(”0"b)d”o=go! (a-b)
1
and (4.3)
[£ (ny-a)h_ (n,-b)dn,=f , (a-b),
o5 0 9 0 0 of
where
oi = (o§+og)l/2. Now by Fatou's lemma and (4.3), we get
(i) 0 o 1 LA, Lyt
3 3 . —_— = L = 1
112_>inf r (t085,) > *cfo {lmln{ U,(2yo), 5 foi(Zyo)‘dyidyo
(4.4)
o LoX, LoAi
= [ min{ g, (%), 5 fo,(x)}dx.
- i i
On the other hand, for all 1=(T,w0 YET
0
(i) 0.7 0
Yy 85 = f L,(1-E, _, [8;(X.~X.)])dw (0.)
it _J Oi’GO(iA 1 Oi 60 i*71 70 60,i i
+f L,E [6 (X;=Xg) 1dw (6.)aT (1)
]ni—ool > A+e 270;% 9,1 * 0
Iy A [1-inf g. (n )]+L X !sup g.(n.),
In,l<a™? 't 240 | 2awe it

—_ — 0 - —
where n; = ei Oo,gi(ni)»EniIGi(Yi)] and Yi—xi XO.
Since Yin(ni,oiz), so as was shown in the proof of Theorem 3.2, wc¢ have

sup g.{(n.)=g,(A+c) =g, {(-0-7)
l”i|1A+' it i i

and (4.5)

inf qi(ni)=qi(A)=qi(-A).
ing lza

Thus,

atiniececounilinn, . TR
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. . (A)+g, (=4) g, {A+c)+qg, (=A-¢)
(1) 0 93 i o od i
r (1,8)<LyA; [1- 5 J+L,A 5 -]
oL, A, L. )!
_ 17i.,_.:0 271 .0
=/ 50 S (vi)lagy lyg)e 3= 85 (v 6, (y)dy,
L L, A, L,A!
= { min{ % 1 g 1 (x), g 1 fof(x)}dx. (4.6)
-0 1 1

By (4.4), sup r MV (1,80) < lim inf r (o ,60))

T€T n-o in
for all i=1,2,...,k. Lemma 4.1 now implies that §0=(6?,...,60)

is a T-minimax rule in D'. This completes the proof.

5. Optimal properties of the I'minimax rule.

Suppose that we have n, independent observations Xil’

xi2""’xini from Hi, i=1,2,...,k.
n,
- 1 1
Let X, = =~ ) x.., then the I'-minimax rule is of the form
in, n, .& ij
1 i 3=1
§*(x, )=I1,_ (x.  =0.) (5.1)
i 7ing (-t; ()t (n) 1 in, 70
where ti(ni) is the positive root of the equation

hi(x)=k; cosh[ni(A+s)x/of}/cosh{niAx/of} = 1

: [ [ - . 2
with ki = L2Ai/(L,Xi)-exp{ ni(ZAFE)r/Zui}.

Consider
2 2
fi(x)—kiexp{ni(A+a)x/oi}/exp{niAx/oi}

and

exp{ni(A+r)x/n?]/exp{niAx/nf}.

(x) = % k
gyixr =3 K i

Then, qi(x) < hi(x) < fi(x), for x > 0.
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Let ri(ni) and Si(ni) be the only positive root of gi(x)=0 and

fi(x)=0 respectively, then ri(ni) > ti(ni) > Si(ni)'

2 '
Oiln(LZAi/ZLlAi)

Now, ri(ni) = A+ 5 - s {
1 |
2 , '
c oiﬁn(szi/LlAi)
sj(ng) = A+ 5 = nje '

. s P _ €
hence 1lim y.(ni)—llm ti(ni)—llm si(n.)— A+ 5.

i
n_-)ﬂ) n_—)m n'—Pm
Then,
1im inf E, [§*(x._ )]
n,»e0,=0,]<A 0 ooy
1 i 70'—
ti(ni)—A —ti(ni)—A
n,=+m= c.vn. o.v/n.
i iT i i i
and
lim sup E, [§*(X. )]
6, 1 1D,
n; 101-00]1A+E i i
t.(n.)-(A+c) -t.(n.)- (A++)
= lim [¢ (-2 ) = (e )] = 0, (5.3)
n.»w u.vn. o. Vn.
1 1 1 1 1

for all i=1,2,...,k.

Theorem 5.1. lim sup r (1,8%*) = 0,
min(ng,...,n )>w 167 b

where A% = (AI,...,é;) is the I'-minimax rule with é; defined by

(5.1), for i=1,2,...,k.

sup r 1) (1, &%)
1 1o 1

Proof : sup r(r,5%)
S i

A
I~ R
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: n

; < ] LA (1- inf E, [6%(X. 1)

: j=p + 1 1o, ~0,[<a oy iing

: i 70—~

: + L,A! sup E, [8*(X. ).
2 lloi-GOIiA+E 6; 1 iny

A, iy

Hence, by (5.2) and (5.3)

lim sup r(1,8*) = 0. This completes the proot.
min(nl,...,nk)»w T€T -

When 80 is unknown, let 60=(5g,...,62) and
8%x, L%, =1 % -%. )
i : ’ = — : - ’
i'Tin On0 [ ti(ni,no),t{(ni,no)] ing Ono

where ti(ni,no) is defined in (4.2) with oi and ug replaced by

oi/ni and og/n0 respectively. Then lim sup y(l,&0)~0
min(no,...,nk)>w ter

also holds. The proof is thus similar to that of Theorem 5.1 and
is omitted.

In deriving the T'-minimax rule §*, we have proved that &* is
a Bayes rule wrt t*. It is easily seen from (3.4) that §* is the

unique Bayes rule wrt 1*, and hence it 1is admissible.

Theorem 5.2. When 00 is unknown, the '-minimax rule &Ox(h?,...,ﬁg)

is admissible in D'.

Proof: Let To=(T0,mg ) be a measure on 9 such that Ty is

Lebesgue measure on @0 and w* is defined by (4.1). Then for i
0

© WA

ko ,
? — l -t -t -
all é€p’, rCigy,8)= ) [ [ [ =10 ;i(xo,xi))q”i(xj oM, (xp= )

1:1 - =¥ amr¥

o

+
e
N

£ . .
dei(xlei)fni(xi O)hx()(.\(o O)dnodxodxl
k " ")i
= ) f [ 5 L9, G mx)dxgdx;

=1 =0 = i

b
[l
3
i
&
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P LoAj il
+ _i _iéi(xi,xo)[—5——foi(xi-x0)- —§—~goi(xi—xo)]dxidxo
by (4.3).
. . . 0_,.0 .0
Hence, the generalized Bayes rule is given by 4 —(&l,...,uy)

where

1 ' - < . .=
1 if )\iLZfOi(xi xo) < Xlngui(xl XO)

0 -
6i(xi—x0)—

which is exactly the rule we defined in (4.2). Also, 80 is the

unique (up to equivalence) generalized Bayes rule wrt 9 in D',
and r(ro,éo) < «, Hence 50 is admissible in D'. This completes

the proof of Theorem 5.2.

6. Relaxing the assumption of normality.

In this section, ﬂi's are not limited to be normal populations.
Let X; be an observation from Il with pdf fi(xlni) and let A, =

ix[szi[fi(x]00+A+g)+fi(x[00—A—t)]

< Ll\i[fi(xl00+A)+fi(x|00—A)] } for i=1,2,...,k. (6.1)

Theorem 6.1. Let g, (0,) = E

L

[IA (Xi)] where Ai is defined by
i i
(6.1). If gi(oi+ﬂo)=qi(00~ﬁi) and 95 1s increasing for ”i - ”0

for all i=1,2,...,k, then &6=(&,,...,4, ) is a i-minimax rule where
! 1 k

&i(x)=IA‘(xi).
1

Proot: Let T* be defined as in the proocf of Theorem 3.2, then

the Bayes rule wrt 1* for the ith component problem 1s given by




16

Gi(§) = IA.(xi)' Now, since g, is symmetric about 6, and gi(ui)

i
is increasing for oi > 00, so

0

sup g.(0.)=g. (8,+0+c)=g. (V. -A-v) and !
16.-6, | >a+e 171 170 i*o ?
i 70"~
inf g.(8.)=g.(6,+A)=g. (9,-A).
Iei'60|iA 171 i'’0 i°7°0

Then by Theorem 3.1, we conclude that § is a I'-minimax rule.
As an example of this theorem, we consider the problem of '
selecting binomial populations with entropy larger than a yiven

constant. For 1i=1,2,...,k, let Hi%b(ni,oi) and ‘+‘((!i = —Uitnvi—

(1—ei)£n(1-0i) where n; is known and 6, unknown. ¥(n;) is the

entropy associated with Hi. Define Hi to be good if W(“i) ok

and bad if Y¥(6.) < £. This is equivalent to saying that iy 1s

i
. 1 . . 1 . o o
good if |bi- 5[ < 4 and II, is bad if lei- 5! Chte o (6.2}
where A and ¢ satisfy w(% +A)=8+¢', and w(% +h+e ) =,
n.,-x n.-x
Loat (2aarr®E ooy b v d sney L o)X
271 2 2 2 2
Let h,(x)= —
i lei 1 +,)x(l -\)ni—xﬂl +/.)ni—x(l e
(E 1 '2— IR 2 O 2 f |
n, n,

we find hi(f_ +x) = hi(f’ -x) and

hi(X+l) ni-l

s . = . 3 > = < c R 1s decreaslin

hi(X) ’ R 1 if x ~, , — Hence h](x) 1s decreasing ;

n; n,; -

for x <« 7= and increasing for x - 5 Now, in view of (6.2), we

. 21
find 00 = 5, SO that

A, = {x|]L, "¢ (xl-£ +,“<h)+f.(xj.£ ~A=t )]
i Pho ittt iy o i'*12

1 1, v
Lov e (xl5 +m+fl.(x|7 a1 s Ixth (%) 1

11
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n, n, N, n;-x
= {x|53= -m; < x < 5= + m}, where £, (xJo)=( 107 (1-0) and
n; n,
5= +mi satisfies hi(fh + mi) = 1. Then,
i i i i

= E =g, (1-6 1 =q. (+ -
= hl_oi[IAi(Xi)]‘qi(l Ci)' sSo gi(z +0i)_~gi(2 (}i). Now, by

Lemma 3.2 and Theorem 6.1, &z(&l,...,sk) wlith Ai(xi) =

I[n‘/2-m.,n.(x.)2+m.] is a I'-minimax rule.
i 1771071 i

A density function f(x|0) is said to be a PF (Pélya-Frequency)
function if # is a location parameter and f(x]|") is TP. It is
known that if X has a PF density f(x-0) and f(x)=f(-x), then 'X!

has a TP density (see Karlin (1968) p. 738).

e g

Hence,
f(x+02)+f(x—02) o f
f(x+Ul)+f(x—ﬂl) e ;
3
is symmetric about 0 and is increasing for x - 0 when H2 Y 0. :

Theorem 6.2. TIf X, has a PF density f, (x[i,)=f, (x-",) and

fi(x):fi(—x), tnen the assumptions of Theorem 6.1 are satisficed.
Proof: Now Ai defined itn (6.]1) reduces to
tijx;ti? by the monotonicity of (6.3)

.(Xi)]:p[-ti+“

.zi+t- <t 40
i i

0 i--"1 O]

whoere Zi:Xi-wi. Since Zi and -Zi have the same distribution, it

follows that so qi(“i+“0)=qi(“o-“i). By Lemma 3.2, the assumptions

of Theorew (.1 are satisfied.




18

An example where Theorem 6.2 is applied is when “i has a

+
c, -c.|x.-b1
. . 1771 1 . .
double exponential density fi(xlUi)= §i e for i1=1,2,...,k.
In this case the I'-minimax rule is 6=(%l,...,ak) with
o, X -t o=l= = ix. =b 0%
1L, o T T T T T 0T
1 if T T - ]
XlL TCy Xy THgThAL -c xl-” +
e te
6i(xi)=
0
7. Bayes rules and minimax rules.
In Section 2, we assumed that partial information abouat - 14
p
known and is summarized in the class . In this scction, we

consider two extreme cases, namely, either complete 1ntormation

7 or no information about  is known. Then we arc interested in the

1

| o . .

{ Bayes rules and minimax rules respectively. The problem will be
treated under the assumption that ”0 1s unknown and xj N(“i,ﬂf)

for 1i=0,1,...,k. Assume that "y has a normal prior distribution

. . 2 ) )
with mean ay and variance Bi, then UilxiuN(ai,b;) where

2 2 2,2
uioi+xibi 2 Uibi
a. = ——=——=_= and b, = With the same loss ftunction as
i 2.2 i 2
oL +R" o7+
1 71 1771

defined in (2.1), it can be easily shown that the Bayes rule 13

B B

8 =(al,...,ff) where

. ", , ,
1 if L2P[le-b A X

'3 O \ —s ! ’ v v
0 Pl !

0l i 0 et

6% (x)
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0 > ’
a.-a —_—
_ 170 v o2 A Voo . 2,.,2 B .
where Y; = pv ¢ Ai = bi’ = b{’ bi = u/b0+bi and s; is
the positive root of the equation (7.1) with inequality replaced

by equality. The following theorem determines the minimax rule.
Theorem 7.1. Let a=(a1,a2,...,ak) and 1=(1,1,...,1) and let
M M M L . . .
& =($1, .,ék) be the I'-minimax rule in D' for I'si (a,l-a) (seec

(3.3)). 1If a; is chosen such that qi(ai)=1 for all i=1,2,...,k,

where
ti(a)+A+i —t. (a)+A+:
Ly [ () = b (s )]
- i i ,
q; (a) = — “t, (a) +h “t (al-7 - (7.2)
Ly [of =T )+ ( 7 )]
i i

M . R
then " 1is a minimax rule.

) . (l) 3 ,r‘i* - Y 2 3
Proof: For A€G,, R'" (#,0)=L Plx,-x,|zt (a;) |y, 0,) 1
-t.(a.)~-(".=-0_) -t.(a.)+(0.=-0_)
=L (S 11 0y
i i
-t (a.)=" ~t, (a,)+A ]
C L [ (P i ) )
i i .
’
Similarly, for H€Bi,
(i) t.{a.,)+  +: -t (ai?+ﬁ+-

(”:‘M»'I: S

R AR R

If OﬁBini, then R(l)(w,?.)=0. Now from (4.4} and (4.6), we qet
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(1) 0

lim inf r (t_,8: )
n’' in
n—»u)
-t. (a.)+4 ~t.(a.)=~-4
2 Lyale(—r—) 4o (i) ]
i
t. (a.)+A+e -t. (a.)+A+r
171 , 171
+ L2(l-a)[®( 57 Yy =2 ( o )]
i i
-t. (a.)+4 -t.(a,)=-A
_ i1 i1
= Ll[b( 57 )+ ( = )}
i i
t.(a.)+0+¢ -t.(a.)++:
— . 1 1 . 1 1
= L2[»( 57 ) =% ( 5 )]
i i

sup R(l)(o,é?) for all i=1,...,k.

BEY
Then Lim ing r(c,89) - ? lim inf r (0,09
‘ ‘hrond 24 im inf r ‘hr¥in
n i=1 ns»
k ,
>} sup R(lj(u,éT) > sup R(O,hM).
i=1 8€9 - H€D c
It follows that SM is a minimax rule.
Lz(l-a) fui(X)
Let vy.(a,x) = , (7.
i Lla goi(x)

then yi(a,ti(a))=l by (4.2), which implies that ti(a) is a
continuous function of a by the implicit function thecorem.

Hence qi(a) is a continuous function of a, for 0O-a<1. Now,

lim g. {(a)=1lim qi(a) = o by (7.1) and (7.2). Also, for
a+1l t(a) >
i
) 2
o Lyexpl-¢(24+<)/207] o "
a; = 5= t;(aj)=0, so qi(a;)=0- Then, by
L1+L2exp[-f(2/+;)/2oi]

the continuity of q; there exists an ai(agfaifl) such that

qi(ai)=1. This shows that a minimax rule always exists.
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8. Comparison among Bayes, ['-minimax and minimax rules

When one faces a decision problem, the choice of thlie optimal

S e ek B3 A s i+ e i bt 1S

rules depends on the prior information one has. In general, one
would use Bayes rules if the prior distribution is known exactly,
use I'-minimax rule for incomplete prior information and use i
minimax rule if no prior information is available. Hence one is
interested in studying the robustness of these rules against the
assumption of the prior information. In this section, we compare ‘
these rules in terms of the Bayes risk, maximum risk over ! and the

maximum risk over ?*, Since the loss function is assumed to be

additive, the comparison is made for the first component problem

only. In this section, 3=(x0,x1), Qz(HO,Gl) and d1B(U)=dtO(HO)d:l(“l),

2 .

- “ . . = . ) =
where 1, v N(u;,B7) for i=0,1 Let 44(x) II-t 't J(a.-a.) be the
B’ B 1 70
*i”f*xi*i ﬂ

Bayes rule wrt 1 (see Section 7), where a. = ———=—— for 1i=0,1.

B i ”2+82

i 71

Also, let & (x)=I )(xl-xo) be the I'-minimax rule in D' and

G [—tG,tG
&M(X):I[-tm,tM](xl—XO) be the minimax rule. Define rl(‘)=Y(1)('B,'), !
rz(*)=sup r(l)(x,*) and r3(ﬁ)=sup r(l)(I,&). i
el 1€ Q%
Then, rl(68)=L1PTB[lal—a0}'tB,Jhl-UO[;ﬁ1+L2PTB[’al-aOILtB,I“l-”O\_‘+ J.
.4 '
Let d = « “itge wi: ;irz, i=0,1

u =hé+ﬁf and v2=w +w1. Then, we find that
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a,-a,-d
— 0 1 o .
g -8 _-d N ’ where p = 3
3 0 o 1
Hence rl(GB) =

Ll{F(~Bl,C;—o)+F(—Bl,D;-o)+F(Bz,C;p)+F(82,D7w)*

+ L2{F(B1,D—A;p)+F(B2,D—A;p)+F(Bl,—C—A;p)+F(B2,—C-A;-w)}:

-
i
o))

-tB—d
2 v

o= hzd p zind

where B, = , A=

clm

[ ]
o
—

F(XO'yo‘”)=P[Zlix0'Zziyo] with “Nit g /- v 1

.. © = _ e , -y et
Similarly, r;(S.) LlPTB[|Xl X0|>tG,|8l LO\iA]+L2PIB[|X1 Xg ity

= Ll[F(-Gl,C;—p')+F(-G1.D;~p')+F(G2,C;o')+F(G2,D:n')]

+ L2 [F<GllD-A; O')+F(G21D—A; D' )+F(G11_C-A; =L ')+F(G2,"C—A,’ - ! ) ] v

t .~-d £ ~ad
where G, = G , G, = G ’ y2=o

2 PR |
1 Y 2 Y +u- and p' =

2,2
+Ol .

0

Since éG and éM have the same form except for the constant t
t,,—d -tM-d

and t,, so if we let M1 =M and M, = - and replaces G

M Y 2

G2 by Ml’ Mz, respectively, in the above formula, we yet r](ﬁM).

G

l ’

The followinn lemma is used to compute the maximum risk over i.

| Lemma 8.1. r,

('5)=L1)1(l—I lnf] E“lé(X)])+L2%l| sup B8 (X)) !
: [01=8g128 ~ t

l—ﬁzjgﬁh

; Proof: - 1s trivial. To prove the other inequality, let 1hn}

and {#'} be two sequences such that 6 v {G1jn —n |-/,

Ge € 1) ]u =0 lo04 ) and Een[“‘?‘”" inf B [F(X)],

- YA

170




oy — - wr—ee

o

“,lﬁ(x)» sup F [a(x)] Let (nEF be defined by P [o=0 ]:\l
‘n fo =60 ]-A n
1 0
and Pln[U~Qn]- 1 then

sy=sup r P, ao0im e P 0oL r (- inf B (60 )
el N lg. -0, ]<a = N
1 70—
+ LoA! sup EOIS(X)J. This finishes the proof.

[0 =041 20+

— & .
From Lemma 8.1 and (4.5), we get rz(éG)—LlAl[¢( 57 y+9( "i )

t A -t =M=
G ") -q) (J‘O—l—-
1

+ LZXI{Q(
-t +i —tM—ﬂ

we get ro{8y)=(A A ) Ly [ (—r—)+ (=) |
1 1

When tC is replaced by tM’

. . 2
To find rz(SB), first note that al-ao\el,eomN(u,( ) where
2 2 2 2 4 2 42
b9 Bo% %L %% 2 B19; “0%0
Sae v 2w Yo SR o M Ji At S I SR S S R
SR 0770 1771 0% 1771 0770
tB“U —tB‘U
gg (i) =B, [6p(X) ] =P [-tp<a;-aj<tp]=0¢( ; ) =2 ( 3 ) (8.1)
then gy (:)=gg(-u) and gg(y) is decreasing in ful.
We consider the following two cases:
22 \
(n)y if -5 # —= then # . Let .=t » + «© then ',
27 3 2 27 7 2 17"
“0 (l L1+nl L0+00
So, inf E“[éB(X)]=lim gB(U)=O and sup F.[ (h)]=u (0),
NI e [u] s b= Lorer
1TVl 1yl s
because {U|u=O}H{2]}01-HO}iA+‘}# #. Hence, r,(8,)=L ) +L, 2 1q,(0).
’72 (52
{(b) If AL ez, then y= 1 [, =8 )+92(q -xa)]. So, when
2 2 2 1 0 1 0
BO Hl l+e
o= -2, the maximum value of [u' is u, = Lo eed om0
A ‘ AR U




24

When ]81-60l1A+g, the minimum value of |u| is 0 if ezlul'ﬂgl“ﬂ+'7

and is

1 2 . 2
M= 5 [(a+e)-e“fay-agl] if e“laj-ug|zh+e. (8.3)

1+e :

Hence, we get

. 2
Lydy [1-gg () 14150 J9p (0)  if e“lu —ugf2a4

r2(68)= ,
Lidg[1-95 (ug) 1410 g (1) if e"fa;-aglzat,
where 9g is defined in (8.1). To find r3(.), we need the following

lemma.

Lemma 8.2. r3(6)=max{Ll(l- inf Ee[é(x)]), L, sup B, L8 ()]0
'el'eoliA ~ N l()l-ﬁol_.'_/\‘H'

Proof: The proof is similar to that of Lemma 8.1.

-t,,-A -tM+A
Now, from Theorem 7.1, r3(6M)=Ll[¢( Oi )+ ( Ui )] =
tM-A-E -tM-A-E —tG—A
L2[¢( 5 )= ( 5 )1. From (4.5), r3(6G)=max{L1[¢(—ETﬂ—) + 3
1 1l 1
~tgth to-b-e -to-b-e i
¢ (v, L2[¢( s -9 57 y1}. We also find that r3(&B)f
1 1 1
o2 02 o2 o2 }
max{L,,L,g,(0)} if Qs L por 2= -1-e2, i
1729 52 7 g2 52 g2 3
; 0 1 0 1 !
% . 2 . |
| Max{L, (1-gg(ug)) ,Lygg(0)}  if e loa —og |26+ .
:; r3(6B)=
! Max{Ll(l-qB(uo), ngB(ul)} if < ,

where Mo and p, are defined in (8.2) and (8.3). Thus we have

all the formulas needed to compute the tables for comparison. E

i
! .
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Table I, II exhibit tB’ tG’ tM and ri(é) for § = SB'SB' and
GM’ i=1,2,3. They are arranged in the following manner:
tB rl(GB) r2(68) r3(6B)
ta rl(GG) rz(éG) r3(6G)
tM rl(GM) rz(GM) r3(6M)
2 2
%1 _ 9o 2 2
The tables are computed with ——= = — = ¢“ and (0,,85)=(0,1). The
nl n0 0’70
selected values of the variables are:

(1) 02 is .2 in Table I and is .5 in Table II.

(2) (a;,8%) is chosen as (0,.5), (0,1), or (0,2).

(3) A is chosen as 1. or 1.5.

(4) For A=1l., ¢ is chosen as .3 or .8.
For A=1.5, € is chosen as .5 or 1.

(5) For (“l'Bi)' A, £, and 02 fixed, Al and Ai are computed

so that TBEF.
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TABLE I. »° = .2
A=1 (@,,8%)=(0,.5) A=1.5 (¢, 0)=(0,.50
- 1, l— . - . ',-l,Jl_ ,-) )
= = ‘= = 5 = - a3
£€=.3 Al .5858 Al .2885 £=.5 ry=.7793 4 1=.1025 B
1.1500 .1303 .8687 1.0 1.7500 .0524 .8818 1.0
2.0944 .1798 .2828 .8955( 3.3731 .0889 .1021 .9850
1.1503 L1512 .3553 .4064] 1.7500 L0771 .3054 .34b3
£=.8 X,=.5858 X1=.1416 £=1.0 XA.=.7793 1.'=.0412’““‘"4
1 1 1 1 ] 4
1.4000 .0508 .7268 1.0 2.0000 .0169 .8206 1.0 l
2.1098 .0619 .1207 .6879| 3.1757 .0264 .0385 .8573 !
1.4001 .0708 L1917 .2636| 2.0000 .0351 L1761 2146j
B N — 2. T
A=1 (al,Bl)—(O,l) A=1.5 (uy,87)=(0,1) ~—E
= 3 ': — = ':
€=.3 Al .5205 xl L3580 £=.5 N =-7112 0 .__1573__““1
1.1499 .1337 .3397 .5503| 1.7500 .0647 .2104 5628 |
1.6494 .1461 .3333 .7097} 2.9570 .1066 .154¢6 9349
1.1503 .1447 .3570 .4064 | 1.7500 .0804 .3008 34632
£€=.8 xl=.5205 xi=.2o31 e=1.0 X =.7112 Ai:'077}--wu_,j
1.4000 .0576 .1597 L4247 2.0000 .0241 .0887 L4372
1.8706 .0619 .1545 .5444 | 2.8887 .0344 .0663 .7300;
© 1.4001 .0690 .1907 .2636 | 2.0000 .0367 L1692 2146 !
- 2, _ N 7 IRl
A=1 (0,,87)=(0,2) A=1.5 (a),B])=1(0,2) B |
= ) = '= = =3 .= - "
£=.3 1 L4363 Al .4529 £=.5 ‘)1 .6135 1 1=.2482 -
1.1499 .1260 .8724 1.0 1.7500 .0725 .8614 1.0
1.1044 .1350 .3612 L4349 2.4739 .0982 .2298 L7732
1.1503 .1318 .3614 .4064| 1.7500 .0810 .2984 . 3463
= = ‘- = = "
£=.8 Al .4363 A1=.2987 £=1.0 A;=.6135 A1=.1489
1.4000 .0588 L7317 1.0 2.0000 .0304 .7624 1.0
; 1.5896 L0597 .1871 .3697! 2.5663 .0375 .1088 .5418
1.4001 .0648 .1937 2.0000 .0376 L1636 L2146
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TABLE II. o2 = .5
7 A=1 (a.,82)=(0,.5) A=1.5 (x,,8%)=(0,.5) |
L ll l 1. ll 1 . o _*_‘J
= = = S e = V' = q '
/=.3  ),=.5858  )}=.2885 (=5 11,7793 1{=.1025 _J
‘ = i
1.1469 | .1968 .8594 1.0 1.7500 | .0803  .8815 1.0 ! |
3.5136 12654 .2881 9866 | 5.8077 | .1022  .1025 9999
1.1771 .2522 .3886 .4445| 1.7509 | .1579  .3541 Ja015 |
(=.8 A =.5858  )1=.1416 F=1.0 X =.7793 >1=.0412 |
~ —m ey
1.3991 | .0928 .7249 1.0 2.0000 | .0313  .8205 1.0 ;
1.1767 11131 .1384 .9157 | 4.9393 | .0398  .0412 9974
1.4117 1562 ©2533 .3482 | 2.0003 | .0979  .2533 3087
A=1 (., ,82)=(0,1) A=1.5 (e ,22)=(0,1) |
l' 1 4 o . l' 1 ’ .
e
D=3 \[=.5205  1}=.3580 €=.5 1 =.7112 )}=.1573 :
1.1441 | 2113 .3613 6601 | 1.7500 | .1066  .2081 7340 |
2.4180 .2430 .3516 8681 | 4.7675 | .1517  .1572 9972
11,1771 ’ 2412 3904 .4445 | 1.7509 | .1592  .3487 L4015
! .
- \
RN A =.5205  }1=.2031 =1.0 A;=.7112 11=.077] |
L 1.3980 1121 1967 .6167 | 2.0000 | .0493  .1008 6915
2.5834 11238 1887 .7833 ] 4.2218 | .0659  .0761 9574
1417 | .1506 .2520 3482 | 2.0003 | .0979  .2433 3087
as1 (n).83)=(0,2) A=1.5 (a),8%)=(0,2)
l - _——— — — —
L_j=.3 A =.4363  31=.4529 =.5  A;=.6135 :!=.2482
‘ e
' 1.1409 .2058 8343 1.0 1.7499 | .1269  .8574 1.0
| 1.1754 2212 -3952 4452 | 3.5599 | .1833  .2456 19406 |
1. 771 .2210 .3952 14445 | 1.7509 | 1563  .3460 4015
r-- — ': i = \ = .) ': ago N 7 ?
| A =.4363  )1=.2987 1.0 =.6135 > [=.1489 ; &
L 1.3968 .1205 L7177 1.0 2.0000 ’ L0679  .7615 1.0
| 1.8999 1230 .2423 5397 | 3.4159 | .0878  .139] 8201
l1.4117 11409 .2559 .3482 2.0003‘

. 0967 L2353 .3087

'
P
i
b
|
I
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Discussion of the Tables

It is seen from Table I and II that:

l. Minimax rules compare favorably with '-minimax rules in terms

of rz(.), and with Bayes rules in terms of the risk l(.). ‘
2. The Bayes risk of the !'-minimax rules is only a little more ;

than that of Bayes rules. ‘
3. when (a1,8§)=(0,1),the performance of Bayes rules is close to

[-minimax rule in terms of rz(.) and close to that of the

minimax rule in terms of r3(.). If (ul,sf)¢(o,1), Bayes rules

show some large increase of risks yz(.) and 13(.) when compared

with I'-minimax rules and minimax rules, respectively. To

illustrate the use of the tables, let us look at the following 0

example: i

Example 8.1. Type HO (control) machines produce part P(p) where
p is the diameter of P, and p!HO v N(8,,1). Type 'l,,li,, and !,

machines produce part Q,(q;), and qiln ~ N(8,,1) for i=1,2,3.

i
Let us assume that when [61—80[ < 1.5, part P and part Q. can be

matched, and when lei-eol > 2.5 they cannot be matched. Assume

"

that the partial prior information I' is as follows:

Pl]o,-04] < 1.5]=.78 p[:pl-eol > 2.5)=.04
P|8,-684] < 1.5]=.71 Pll6,=041 2 2.5]=.08
P(]63-64] < 1.5]=.61 Pllug-0g1 > 2.51=.15 "

Now, there are machines a Ay Ay for sale where a].{Hl for

o %1’
1i=0,1,2,3. Suppose we can take 5 samples from each machine and
let ii be the mean diameter of the samples from machine a, (i-0,1,2,3).

Since A=1.5, «+« = 1.0, from Table I, the -minimax rule is:
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| a, is good for a, iff |xl—xol < 3.1757
a, is good for a, iff ]X2—X0] < 2.8887
ay is good for a, iff IXB—XOJ < 2.5663 ;

If we feel the claim regarding the partial prior may not be

correct and we would rather assume that there is no prior information,

then we might use the following minimax rule: a; is good for

a, iff Ixi—Xol < 2.0 for i=1,2,3.

If from some other source, we know that GO ~ N(0,1), ﬁl v N(0,5),

02 ~ N(0,1) and 03 ~ N(0,2). Then, we might use the Bayes rules,

from Table I we get

. 5- 5= 0]
a, is good for ag if |5 X\- % Xol < 2.0 :
a, is good for a, if | 2—Xo] < 2.4 ;
. 10 3 5 ¢
ay is good for a, if l*T X3- ¢ X| < 2.0

1f we are not sure about the definiteness of any prior information,

we may then use the rule which is most robust to the assumption of i
the prior distribution. So from Table I, we may use I'-minimax

rule for a,, use Bayes rule for a., and use minimax rule for a,.

2 3
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